SAGS - Upper bounds for finite subgroups of algebraic groups
ثبت نشده
چکیده
Consider the following setup: let G be an algebraic group over some field k. What can we say about finite subgroups of G? In particular, is it possible to bound above the orders of such subgroups? The history of such a question goes a long way back, starting from Minkowski, then Schur and others. We will briefly introduce some weak bounds given by Minkowski, then proceed to give bounds which are closely related to Schur’s idea. These bounds are not optimal for a general G, but are ’very close’ to being such, and much easier to deal with than an optimal bound. We start by introducing some notation. Let l be a prime, and vl the standard l-valuation on the l-adic numbers Ql. We will also write vl(A) to denote vl(|A|), if A is a finite set. Unless specified differently, k will be a field of characteristic different from l.
منابع مشابه
UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملON THE CHARACTERISTIC DEGREE OF FINITE GROUPS
In this article we introduce and study the concept of characteristic degree of a subgroup in a finite group. We define the characteristic degree of a subgroup H in a finite group G as the ratio of the number of all pairs (h,α) ∈ H×Aut(G) such that h^α∈H, by the order of H × Aut(G), where Aut(G) is the automorphisms group of G. This quantity measures the probability that H can be characteristic ...
متن کاملStrong exponent bounds for the local Rankin-Selberg convolution
Let $F$ be a non-Archimedean locally compact field. Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$. We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$. We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$. Using the Langlands...
متن کامل[ m at h . N T ] 4 M ay 2 00 4 THE CONJUGATE DIMENSION OF ALGEBRAIC NUMBERS
We find sharp upper and lower bounds for the degree of an algebraic number in terms of the Q-dimension of the space spanned by its conjugates. For all but seven nonnegative integers n the largest degree of an algebraic number whose conjugates span a vector space of dimension n is equal to 2 n n!. The proof, which covers also the seven exceptional cases, uses a result of Feit on the maximal orde...
متن کاملA ug 2 00 3 THE CONJUGATE DIMENSION OF ALGEBRAIC NUMBERS
We find sharp upper and lower bounds for the degree of an algebraic number in terms of the Q-dimension of the space spanned by its conjugates. For all but seven nonnegative integers n the largest degree of an algebraic number whose conjugates span a vector space of dimension n is equal to 2 n n!. The proof, which covers also the seven exceptional cases, uses a result of Feit on the maximal orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013